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Things to know

e Convex set and examples
e Visualization of a halfspace

e Convex preserving map
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Figure 1: One convex set and two nonconvex sets

Department of Statistics, University of Seoul

Convex set A subset C of R™ is convex if and only if for all 21,22 € C and all § € [0, 1],
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Cone: Aset K CR"isaconeifx € K — ax € K forany a >0 € R.

Convex cone C'is convex and cone, which means that
0121 + Osx9 € C

for any z1, 29 € C' and 61,605 > 0.

Convex cone is convex.
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Figure 2: Convex cone
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Norm cone

C={(z,t) ER" xRy : ||z]| < t}

.
O:{(a:,t)eRnH:(f) (é ?1 )(f)go,tzo}

Norm cone is convex.

Note that
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Example (norm cone)

Figure 2.10 Boundary of second-order cone in R?, {(zq, xa,¢) | (x3+23)1/2 <

£,
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Conic hull: the conic hull of a set S is the set of all conic combinations of the points in S,

n

Cone(S) = Ej Zaiczzi ta; > 0,2, €8
n=1

=1
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(Conic hull) The conic hull of a set C' is the smallest convex cone containing C.

(proof)

e Conic hull of a set C'is convex and cone.
e If C’ is convex cone containing C' then the conic hull of C' is contained by C’.

e Thus, the proof is complete.
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Ray: {zg +0v: 60> 0}

A ray is convex.
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Figure 3: Visualization of Ray
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Hyperplane and Halfsapce

e Hyperplane: {z € R" : aT2 = b}
e Halfspace: {x € R": a2 < b}

Both hyperplane and halfspace are convex. Hyperplain divides the space into the two halfspace.
Each halfspace is the SOLUTION SET OF THE INEQUALITY.
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Figure 4: Hyperplane and Halfspace
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Visualization of half space

We know that C = {x : a'x = 0} is illustrated by line on a plane and the vector can be
denoted by normal vector at the origin of the line. Let z = a then a'2 > 0 and we know

that the z = a € {x : a2 > 0}. That is, the half space containing the denoted a becomes
{z:aTz >0}
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Let a € R™ and # € R". Fix an a and consider a set {z : a'

x = 0}. The figure below shows

how to display {z € R™ : a"x = b} on graph. First consider a set {x € R" : a'z = 0}.

a
0
\\ an
[ ]
/ 0

fxra'x =0} = {x:<a,x >=0} {riad’'(x —xp) =0} ={x:<a,x —xy >=0}

Unless a # 0, we can choose 2o € R™ satisfying a2y = b. Similarly,
perpendicular vector on the line.
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({w: oo > b} Yool AlZ3} W)
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Practice 1

Consider a,z € R?

e Let a = (2,1)" and draw the point a in R%.
e Draw the line, the set of points (z1, z3) satisfying 2x; + xo = 0.
e Check that the line is the set C' = {z : a "2 = 0}.

e Make a shade on the region 2x1 4+ x5 > 0 and check that the region contains a.

Finally check that a is orthogonal to all elements in C.
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Practice 2

Consider A = R™*2 and = € R?. Denote a;r € R? for j = 1,--- ,m be the jth row vector of
A. We will illustrate the region {x : Az < 0}.

e Note that {z: Az 20} =N, {z : a]z < 0}.
e Draw the region, the set of points (1, z2) satisfying ajTa: < 0 for each j.

e Find the intersection of the regions.
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Examples (I5-ball)
C:{X:(th--- 737”) ERTLJ:%"'—FI‘TQL < 1}

Euclidean norm: ||x||s = /23 + - -+ + 22.

xelC& x| <1

For x,x’ € C,

A

16[l2 + [I(1 — 6)x"2
Olix|l2 + (1 = O)lIx"[l2 < 1

1% + (1 = )x'[|.

0x+ (1-0)x' eC.
The first inequality holds because of triangular inequality.
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Figure 5: [,-ball
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Figure 6: Ellipsoid
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Examples (polyhedron)
Let A be n x p matrix, b € R?, C be m X p matrix, and d € R™.

C={xeR": Az <b,Cx = d} is convex.

?| Ofli= Convex set2] ZO|E O|&3HiA &l 4= QU= Tt
(Proof) Let z,z’ € C For 6 € [0, 1]

ABz + (1 —0)z’) =0Az+ (1 — 0)Ax’ < 0b+ (1 —60)b=1b,

and

Cllz+ (1—0)z")=0Cx+(1—-06)Czx’ =d

So, 6z + (1 — 0):1:/ eC

21/32
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Figure 7: Visualization of Polyhedron
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supporting hyperplane

Let C C R™ and zy be a point on the boundary of C. If a # 0 satisfies a'x < a'z for all
x € C then, the hyperplane {z :a"x = a 'z} is called a supporting hyperplane to C' at z.

Figure 8: Caption
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Convex preserving operation

e If Cq, Cy are convex sets, then C; N Cy is also convex set.
e If C'is convex set, then C'+ z = {z + z : € C'} is convex.

e Let C be convex subset of R™ and f:x € C'+— Az + b € R"™ where A € R"*™ and
beR™ Then {y:y= Az + b,z € C} is convex.

Perspective function™

Linear fractional functions™
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Perspective function

fiR" xRy — f(x,2) € R, where f(z,2) =x/z.

The perspective function preserves the convexity of a set. If C' C dom(f) is convex, then f(C')
is convex. In addition, an inverse image of f is convex.
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Linear fractional function

Let Ac R™*™ and be R™ and c € R" and d € R. f:R" — f(x) € R™, where

_ Az +b

flz) = ot d dom(f)={z:c"z+d >0}
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Linear fractional function Let g : R R™*+1 s affine, i.e.,

on(2)+(2)

where A € R™*™ and b € R™ and ¢ € R™ and d € R. Let P be a perspective function, then

fl@)=Pog.

This representation of f helps to prove that the linear-fractional function is convex preserving.
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e Prove that the linear fractional function is convexity preserving map.

e Solve 2.1-2.10, 2.16-2.19
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Appendix

Separating hyperplane theorem

Let C and D be convex sets in R™ with C N D = ¢. Then, there exists a € R™, a # 0 and
b € R, such that a’xz < b forall z € C and o’z > b for all x € D.
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Appendix

Strict separating hyperplane theorem

In general, a strict separating hyperplane does not hold, even when C' and D are closed.
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Figure 9: Not strict separating convex sets
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Appendix

Strict separating hyperplane theorem

Let C be a closed convex set and D = {z¢} with g ¢ C. Then, there exists a # 0 and b such
thata'z <bforallz€ Canda'z >bforz e D.

This result implies that a convex is represented by all intersections of hyperplanes containing the
convex set.
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Converse separating hyperplane theorem

See p50.
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