
Convex Optimization Problem II

Jong-June Jeon

September, 2022

Department of Statistics, University of Seoul

Department of Statistics, University of Seoul Convex Optimization Problem II 1 / 32



Things to know

• Convex set and examples

• Visualization of a halfspace

• Convex preserving map
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Convex set A subset C of Rn is convex if and only if for all x1, x2 ∈ C and all θ ∈ [0, 1],

θx1 + (1− θ)x2 ∈ C

Figure 1: One convex set and two nonconvex sets
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Cone: A set K ⊂ Rn is a cone if x ∈ K → αx ∈ K for any α ≥ 0 ∈ R.

Convex cone C is convex and cone, which means that

θ1x1 + θ2x2 ∈ C

for any x1, x2 ∈ C and θ1, θ2 ≥ 0.

Convex cone is convex.
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Figure 2: Convex cone
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Norm cone

C = {(x, t) ∈ Rn × R+ : ‖x‖2 ≤ t}

Note that

C = {(x, t) ∈ Rn+1 :

(
x

t

)>(
I 0

0 −1

)(
x

t

)
≤ 0, t ≥ 0}

Norm cone is convex.
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Example (norm cone)
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Conic hull: the conic hull of a set S is the set of all conic combinations of the points in S,

Cone(S) =
∞⋃
n=1

{
n∑
i=1

αixi : αi ≥ 0, xi ∈ S

}
.
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(Conic hull) The conic hull of a set C is the smallest convex cone containing C.

(proof)

• Conic hull of a set C is convex and cone.

• If C ′ is convex cone containing C then the conic hull of C is contained by C ′.

• Thus, the proof is complete.
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Ray: {x0 + θν : θ ≥ 0}

A ray is convex.

Figure 3: Visualization of Ray
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Hyperplane and Halfsapce

• Hyperplane: {x ∈ Rn : a>x = b}
• Halfspace: {x ∈ Rn : a>x ≤ b}

Both hyperplane and halfspace are convex. Hyperplain divides the space into the two halfspace.

Each halfspace is the SOLUTION SET OF THE INEQUALITY.
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Figure 4: Hyperplane and Halfspace
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Visualization of half space

We know that C = {x : a>x = 0} is illustrated by line on a plane and the vector can be

denoted by normal vector at the origin of the line. Let x = a then a>x > 0 and we know

that the x = a ∈ {x : a>x ≥ 0}. That is, the half space containing the denoted a becomes

{x : a>x ≥ 0}.
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Let a ∈ Rn and x ∈ Rn. Fix an a and consider a set {x : a>x = 0}. The figure below shows

how to display {x ∈ Rn : a>x = b} on graph. First consider a set {x ∈ Rn : a>x = 0}.

Unless a 6= 0, we can choose x0 ∈ Rn satisfying a>x0 = b. Similarly, we can denote a as a

perpendicular vector on the line.
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({x : a>x ≥ b} 영역의 시각화 방법)

• {x : a>x = b} 을 나타내는 직선을 그린다.

• 직선의 위쪽의 한 점 x0를 선택한 후 a>x0를 계산한다.

• a>x0 ≥ 0 가 참이면 해당 영역을 칠하고, 거짓이면 반대쪽 영역을 칠한다.
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Practice 1

Consider a, x ∈ R2

• Let a = (2, 1)> and draw the point a in R2.

• Draw the line, the set of points (x1, x2) satisfying 2x1 + x2 = 0.

• Check that the line is the set C = {x : a>x = 0}.
• Make a shade on the region 2x1 + x2 ≥ 0 and check that the region contains a.

• Finally check that a is orthogonal to all elements in C.
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Practice 2

Consider A = Rm×2 and x ∈ R2. Denote a>j ∈ R2 for j = 1, · · · ,m be the jth row vector of

A. We will illustrate the region {x : Ax � 0}.

• Note that {x : Ax � 0} = ∩mj=1{x : a>j x ≤ 0}.
• Draw the region, the set of points (x1, x2) satisfying a>j x ≤ 0 for each j.

• Find the intersection of the regions.
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Examples (l2-ball)

C = {x = (x1, · · · , xn) ∈ Rn : x21 + · · ·+ x2n ≤ 1}

Euclidean norm: ‖x‖2 =
√
x21 + · · ·+ x2n.

x ∈ C ⇔ ‖x‖2 ≤ 1

For x,x′ ∈ C,

‖θx+ (1− θ)x′‖2 ≤ ‖θx‖2 + ‖(1− θ)x′‖2
= θ‖x‖2 + (1− θ)‖x′‖2 ≤ 1

θx+ (1− θ)x′ ∈ C.

The first inequality holds because of triangular inequality.
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Figure 5: lp-ball
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Figure 6: Ellipsoid
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Examples (polyhedron)

Let A be n× p matrix, b ∈ Rp, C be m× p matrix, and d ∈ Rm.

C = {x ∈ Rn : Ax ≤ b, Cx = d} is convex.

위 예는 Convex set의 정의를 이용해서 확인할 수 있는 예다.

(Proof) Let x, x′ ∈ C For θ ∈ [0, 1]

A(θx+ (1− θ)x′
) = θAx+ (1− θ)Ax′ ≤ θb+ (1− θ)b = b,

and

C(θx+ (1− θ)x′
) = θCx+ (1− θ)Cx′

= d

So, θx+ (1− θ)x′ ∈ C

Department of Statistics, University of Seoul Convex Optimization Problem II 21 / 32



Figure 7: Visualization of Polyhedron
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supporting hyperplane

Let C ⊂ Rn and x0 be a point on the boundary of C. If a 6= 0 satisfies a>x ≤ a>x0 for all

x ∈ C then, the hyperplane {x : a>x = a>x0} is called a supporting hyperplane to C at x0.

Figure 8: Caption
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Convex preserving operation

• If C1, C2 are convex sets, then C1 ∩ C2 is also convex set.

• If C is convex set, then C + z = {x+ z : x ∈ C} is convex.

• Let C be convex subset of Rm and f : x ∈ C 7→ Ax+ b ∈ Rn where A ∈ Rn×m and

b ∈ Rn. Then {y : y = Ax+ b, x ∈ C} is convex.

• Perspective function∗

• Linear fractional functions∗
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Perspective function

f : Rn × R++ 7→ f(x, z) ∈ Rn, where f(x, z) = x/z.

The perspective function preserves the convexity of a set. If C ⊂ dom(f) is convex, then f(C)

is convex. In addition, an inverse image of f is convex.
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Linear fractional function

Let A ∈ Rm×n and b ∈ Rm and c ∈ Rn and d ∈ R. f : Rn 7→ f(x) ∈ Rm, where

f(x) =
Ax+ b

c>x+ d
, dom(f) = {x : c>x+ d > 0}.

Department of Statistics, University of Seoul Convex Optimization Problem II 26 / 32



Linear fractional function Let g : Rn 7→ Rm+1 is affine, i.e.,

g(x) =

(
A

c>

)
x+

(
b

d

)
,

where A ∈ Rm×n and b ∈ Rm and c ∈ Rn and d ∈ R. Let P be a perspective function, then

f(x) = P ◦ g.

This representation of f helps to prove that the linear-fractional function is convex preserving.
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HW

• Prove that the linear fractional function is convexity preserving map.

• Solve 2.1-2.10, 2.16-2.19
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Appendix

Separating hyperplane theorem

Let C and D be convex sets in Rn with C ∩ D = φ. Then, there exists a ∈ Rn, a 6= 0 and

b ∈ R, such that a′x ≤ b for all x ∈ C and a′x ≥ b for all x ∈ D.
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Appendix

Strict separating hyperplane theorem

In general, a strict separating hyperplane does not hold, even when C and D are closed.

Figure 9: Not strict separating convex sets
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Appendix

Strict separating hyperplane theorem

Let C be a closed convex set and D = {x0} with x0 /∈ C. Then, there exists a 6= 0 and b such

that a>x < b for all x ∈ C and a>x > b for x ∈ D.

This result implies that a convex is represented by all intersections of hyperplanes containing the

convex set.
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Appendix

Converse separating hyperplane theorem

See p50.
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